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Efficient Network Code Design for Cyclic Networks
Elona Erez, Member, IEEE, and Meir Feder, Fellow, IEEE

Abstract—This paper introduces an efficient polynomial-time
code construction algorithm for cyclic networks, which achieves
the optimal multicast rate. Until this work, no explicit ca-
pacity-achieving polynomial-time code construction for cyclic
networks has been known. This new construction algorithm has
the additional advantage that as sinks are added or removed
from the network, it can modify the existing code in an efficient
localized manner, which is beneficial also for acyclic networks.
For decoding this code, a polynomial-time sequential decoder for
convolutional network codes is also proposed.

Index Terms—Convolutional codes, cyclic networks, multicast,
network coding, sequential decoding.

I. INTRODUCTION

M OST attention in the literature of network codes has
been directed towards acyclic networks, which are

represented by directed acyclic graphs. For these networks, it
was proved that optimal multicast block network codes can
achieve simultaneously the optimal min-cut bound [1]. These
block codes are defined over a non-binary alphabet and are
represented, for example, as elements of an algebraic field
(actually the field size must be at least a square root of the
number of terminals, see [2]–[4]). Furthermore, in [5] an effi-
cient polynomial time algorithm has been proposed to construct
such optimal block network codes (with field size which is
equal to the number of terminals). However, most practical
networks are cyclic, i.e., contain at least a single directed
cycle in the network. For cyclic networks, in the original work
[1] it was suggested to transform the cyclic network into an
acyclic network using the idea of unrolling the network into a
layered network. This approach has many drawbacks: it leads
to time-variant schemes, it has high encoding and decoding
complexities and it induces a large delay. It seems that, in
general, using block codes for cyclic networks will result in
large delay and complexity.

Analogously to standard coding theory, convolutional codes
are an attractive alternative to block codes. Convolutional
codes and related schemes have indeed been proposed, e.g.,
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[1], [6]–[9], and [10]. While convolutional codes can be used in
acyclic networks, it appears that one of their main advantages
is their natural implementation in cyclic networks. A simple
example of a convolutional network code for a cyclic graph
was given in [1]. Actually, it was noted in [1] that convolutional
codes can be beneficial for both acyclic and cyclic graphs as
they may be simpler and require smaller delay and memory.

Cyclic networks not only call for convolutional codes, but
may require that nodes will insert some delay. These issues were
considered in [8], where it was shown that if each edge in the
network has a delay, then there exists a time-invariant linear net-
work code that achieves the optimal rate. However, no efficient
construction algorithm was given there. A heuristic code con-
struction for a linear time-invariant code was given in [7], but
this construction is not specified explicitly. Similar drawbacks
appear in the proposed approach of [9]. Convolutional network
codes for cyclic networks were also considered in [11] and [12],
where the coding coefficients are rational power series. It was
shown in [11] that for networks with delay at each edge, if the
coding coefficients are rational power series, then the code is
causal and implementable, and furthermore, the existence of an
optimal multicast code with rational power series coding coeffi-
cients was proved. It was also shown that these codes are decod-
able, and how the decoder can be found. However, the construc-
tion algorithm given in [11] is not guaranteed to be polynomial,
since it involves an exhaustive search, and the maximal degree
of the rational power series is not given.

In this paper, for the first time in network coding literature,
we provide an explicit, efficient polynomial-time code construc-
tion of a multicast linear network code for cyclic networks that
achieves the exact optimal rate. The maximal required degree of
a polynomial coefficient of the code is , similarly to the
degree in the acyclic case. Interestingly, the code construction
algorithm does not require a delay in each node, but only that
each cycle in the graph will contain a single delay.

As aforementioned, for acyclic networks there is an efficient
linear time code construction, e.g., the construction in [5]. Our
algorithm for cyclic networks assumes that the code designer
has full knowledge of the network. This is similar to the setup in
[5] for acyclic networks. This assumption is valid for moderately
sized static networks. Moreover, developing a good centralized
construction may lead also to better understanding of the de-
centralized and dynamic network code construction problem.
We note that in the case of single source multicast for acyclic
networks, simple decentralized random linear network coding
approaches capacity very closely and with very low complexity
(see, for example, [13]).

While our algorithm assumes full knowledge of the network,
in a sense our algorithm is more localized than that in [5] for
acyclic networks. Our construction algorithm can work for both
acyclic and cyclic networks with one important advantage: our
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algorithm can modify the existing code in an efficient localized
manner when sinks are added or removed, without the necessity
to construct again the code for the entire network. We note that
some information will still be required to be exchanged between
nodes. However, the nodes that will be required to exchange in-
formation are limited only to the nodes that are in a certain flow
between the source and the added (or removed) sink. Thus, the
number of nodes involved in the process is generally signifi-
cantly smaller for practical networks. In contrast, using the al-
gorithm introduced in [5], there is no direct simple way to add
and remove sinks—if we remove or add new sinks, the entire
code, and generally even the field size, have to be changed.

Since with convolutional codes the sinks get a mix of the in-
formation sent during different time steps, it is impossible to de-
code convolutional codes in a “one shot” fashion as block codes.
To overcome this, we also propose in this paper an efficient se-
quential decoder that is natural for convolutional codes and can
be applied for cyclic networks. We analyze the decoding delay
of the decoder. That algorithm further emphasizes the advantage
of using convolutional codes for cyclic networks, since block
decoders (for block codes) are cumbersome in cyclic networks
due to the delays that are inserted to ensure stability, resulting
in at the sink (decoder) a mix of the data sent at different time
steps. An additional benefit of convolutional coding relative to
random constructions is the delay-tuned characteristics of the
sequential decoder. We note that we chose to call the decoder
sequential due to its operation, but it is different than the clas-
sical sequential decoders (e.g., Fano decoder) of convolutional
codes.

The convolutional codes we consider in this work are such
that the coding coefficients are polynomial convolutional coef-
ficients—in other words, the codes are feed-forward convolu-
tional codes. This is a special case of the rational power series
defined in [11]. We show that polynomial coefficients are suffi-
cient in order to achieve the capacity for cyclic networks. Since
the entire network is cyclic and so contains “feedback,” the ele-
ments of the coding vectors become rational functions, or more
specifically rational power series, as defined in [11]. The poly-
nomials in this work are assumed to have binary coefficients. By
generalizing [7], [14], [15], it was shown in [10] that for acyclic
networks, binary convolutional codes suffice in order to achieve
the capacity. Using a different approach, we will show that this
is the case also for cyclic networks.

Finally we note that parts of the results presented in this paper
appear in [16]–[19].

The paper is organized as follows. In Section II we introduce
the network model and the notation. In Section III we introduce
an efficient code construction for cyclic networks. In Section IV
we propose an efficient sequential decoder. A discussion of the
results obtained and possible directions for future research in
Section V conclude the paper.

II. DEFINITIONS AND NOTATION

A. General

Consider a cyclic, unit capacity directed network
where parallel edges are allowed. In multicast there is a single
source and a set of sinks . The size of

the minimal individual min-cut between and any of the sinks
is denoted by . As in [5], when convenient we add a

dummy source which is connected to source with edges
. The dummy source is mentioned only when

necessary for ease of description, but we can generally ignore
it, since it can be thought of as an internal part of the source
itself. For our convenience, we assume that the network does not
contain self-loops, which are edges from node into the same
node . If there are self-loops in the network, we can always
eliminate them and not use them for coding, without reducing
the achievable rates of the network. For the directed edge

from node to node , node is defined as the tail of
edge and as the head.

Similarly to [8], we define the directed line graph of
as with vertex set and edge

set
. In other

words, the nodes in are the edges in , the source and the
nodes in . There is an edge in if in the head of edge

is the tail of edge . There is an edge in if in , is
an outgoing edge of . There is an edge in if in , is
an incoming edge of . We denote nodes of as ,
and the edges as . Clearly, if there are edge-disjoint
paths between source and sink in , there are corresponding

node-disjoint paths in . In the line graph , for the directed
edge from node to node , node is defined as
the tail of the edge and as the head.

We define for each sink the graph which is the subgraph
of containing only the nodes and edges that participate in the
flow of magnitude from to the sink . We note that such a
flow is general not unique. We therefore choose an arbitrary flow
of size , since our algorithm works regardless of the choice of
a particular flow. The line graph of is . Denote by
and the set of incoming and outgoing edges of node ,
respectively. Similarly, denote by and the set of
incoming edges of the tail of and the set of outgoing edges of
the head of , respectively.

Unless otherwise specified, we assume that the topology of
the network is completely known to the code designer and that
the code is constructed only once, prior to the transmission. In
this case of a known network, we further assume that is given
by

(1)

and likewise is given by

(2)

For the multicast case without edge failures this assumption is
valid, since it follows from [1] that any edge in the original graph

that does not participate in any of the flows can be removed
from the network without affecting the achievable optimal rate.

For an acyclic network, a topological order can be defined. In
a topological order each node comes before all nodes to which
it has outgoing edges.
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Unless otherwise specified, the base of logarithms throughout
the paper is 2.

B. Linear Network Codes

For linear network codes, any edge has a global coding
vector of dimension associated with it. The symbol trans-
mitted on an edge , denoted by , is given by

(3)

For algebraic block network codes, the dummy source node
gets input symbols denoted by from the

field of the code . For an outgoing edge , of
all the coordinates are zero except for the coordinate , which is
equal to . For the rest of the edges satisfies the recursive
relation

(4)

where is the global vector associated with the edge , an
incoming edge of , and is the coding coefficient.

C. Convolutional Network Codes

For convolutional network codes, let denote the ring of
polynomials over the binary field with variable . The variable

represents a unit time shift. Since in this work most of the
discussion on convolutional network codes is in terms of the
line graph , the following definitions for convolutional codes
are also in terms of . In the following, we use definitions and
notations given in [11]. As shown in [11], in order for the code
to be causal and implementable the local coding coefficients

are in the form where and
are polynomials over the field (the binary field in our

formulation). These functions are termed in [11] as “rational
power series”. The set of these functions is an integral domain (a
commutative ring with unity , which does not contain any
divisors of 0) denoted by . The set is a sub-domain
of , which was defined in [11] as the integral domain of
all power series over .

In our scheme, we take the local coding coefficients
to be polynomials from , and therefore they are also in

. Node is associated with an -dimensional global
vector , where each element of the vector is an element of

.
The source node gets input binary streams

. The source starts transmitting symbols at
. The power series in variable of the input stream

is

(5)

The global coding vector associated with node is given by

(6)

where is the global coding vector associated with node ,
an incoming node of , and is the coding co-
efficient of edge . In (6), additions and multiplications are
regular for rational power series in . In order for the recur-
sion in (6) to be defined, the global coding vectors between
the dummy source and the source form the natural basis of
the vector space .

In the original network , assume is the symbol trans-
mitted on node at time instant and consider the power series
in variable

(7)

which is given by

(8)

and so

(9)

where . In the line graph , the
corresponding node is associated with the symbol and
the power series . We note that these definitions corre-
spond to binary convolutional codes, since all the coding coef-
ficients and the input streams are binary.

In multicast, the code construction has to determine the poly-
nomial coefficients such that all sinks can reconstruct
the original information from the symbols reaching them. It is
assumed that after the code design, this set of global coding vec-
tors at is made known to the decoder at sink . It will be
shown in Section IV how reconstruction of the original informa-
tion from the received symbols can be achieved in polynomial
time. As we show in Section IV, for each sink there are nodes
incoming into the sink, denoted by , whose sym-
bols are sufficient for decoding. Denote the vector of the sym-
bols carried by these nodes as

(10)

For sink , , denote by the matrix
whose rows are the vectors , . Then, the vector

is given by the matrix relation

(11)

Denote by the field of rational functions over the binary
field with variable . The vector space of dimension over the
field is denoted by .

III. EFFICIENT CODE CONSTRUCTION FOR CYCLIC NETWORKS

Unless otherwise specified, we consider in the rest of this
section the line graph . In this section, we assume that
there is a dummy source .
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Fig. 1. Flow chart of the construction algorithm.

In the following we give an explicit polynomial time code
construction algorithm of a multicast convolutional network
code for cyclic networks that achieves the min-cut optimal
rate. We have introduced the code construction in [17]. A flow
chart of the entire algorithm is given in Fig. 1. We note that
it is straightforward to modify this algorithm so that it can be
applied to construct, in polynomial time, block network codes
for cyclic networks.

A. Realizability of the Code

Network codes for networks with cycles have to introduce
delay, since otherwise the code will not be stable and causal.
This delay element has to be inserted in order to avoid the
problem of “racing condition,” which is the situation of a node
receiving new information before stabilizing.

In [8] and [11], a delay was introduced at each node of . This
kind of network is known as “unit-delay network.” In our for-
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mulation, in unit delay networks, we assume in this section that
this delay is incorporated into the coding coefficient .
That is, we assume that each local coding coefficient has as a
multiplicative factor (i.e., it is divisible by ) and do not explic-
itly write this delay in our formulations. Therefore, the relations
in Section II-C are still valid, only it is assumed that
contains the factor . Note, however, that the constructed code
in Section III-C may not necessarily generate a unit delay on
each edge in the network. As we will see in Section III-C, it is a
sufficient condition for the code construction that each directed
cycle will introduce a delay.

To ensure that the code is realizable, it was shown in [11] that
the global coding vectors are in by obtaining a closed
form solution. For completeness, we briefly repeat here this
derivation from [11]. Define for the line graph the
matrix given by

otherwise
(12)

where, as we recall, are the edges of the line graph .
Denote by an matrix. For the first columns
element is the coefficient , where is the th
node of between the dummy source and and is the

th node outgoing from source . All the rest of the elements
of are zero.

Denote by the matrix which contains in the th
column the global coding vector of assuming that
all the nodes in are enumerated according to some order
(not including the dummy source and the nodes between the
dummy source and source ). Equation(6), as well as the
initial conditions for the recursion (the global coding vectors
of the nodes between and form the natural basis), can be
written now in the matrix form

(13)

Recall that all of elements of have as a multiplicative
factor. The determinant of the matrix is of the form

where and where is the
identity matrix. Therefore is invertible inside

and the unique solution for is

(14)

where is the adjoint matrix of . Therefore
is a matrix over and (14) is its closed form

expression.
The existence of a multicast code that achieves the optimal

rate with rational power series coding coefficients was also
proved in [11] and [12]. For our purposes, we will show the
existence of a multicast code that achieves the optimal rate
with polynomial coding coefficients by providing the code
construction in the following. The existence proof in [11] and
[12] is more general than our proof in the sense that it applies
to any large enough collection of power series coefficients,
which includes a collection of polynomials, as in our case.
However, the construction algorithm given in [11] and [12] is
not guaranteed to be polynomial, since it involves an exhaustive

search, and the maximal degree of the rational power series is
not given.

B. Precoding

In the following, we show that it is not necessary for each
node to introduce a delay, but there should be only a single delay
for each directed cycle in the network. In this section we no
longer assume as in Section III-A that all the elements of the
matrix in (12) are divisible by . We denote the set of
nodes in that introduce delay by . The corresponding edges
in are denoted by . In this case the coefficient in
matrix contains common factor if node introduces
a delay, i.e., . The set is chosen such that if we
remove from the network all the nodes with delay, then the re-
sulting network would be acyclic. Since the coding coefficients
of the nodes in are divisible by , setting sets the
coding coefficients of these nodes to zero and these nodes are
effectively removed. That is, setting results in an ef-
fectively acyclic network. Since for the network is ef-
fectively acyclic, it follows that we can always arrange the re-
maining nodes of in topological order such that would
be upper triangular when setting . Note that the elements
in the diagonal of are zero because we assume there are no
self-loops in . It follows that when the matrix
is upper triangular and on its diagonal all elements are equal to
1. Therefore the determinant of when is 1.
Since the elements of the matrix are in , and the
determinant is calculated using only multiplications and addi-
tions, is also in . Since
is equal to 1 for it follows that can be
written in the form where . Therefore

is invertible inside and the unique solu-
tion for is in and is given again by (14). We note
that this observation is not actually required in order to show
the correctness of the construction in Section III-C. We show
in Section III-C independently and by construction that a single
delay in each directed cycle is sufficient in order to ensure the
feasibility of the code.

The situation of a single delay in each cycle is defined in [20]
as asynchronous transmission. It is shown that the min-cut is an
upper bound on the possible rate also for asynchronous trans-
mission, as for synchronous transmission. Since in this work we
show that this bound is always achievable, it is also tight. It the
following we introduce the precoding, which is designed to find
the set .

We have to choose a set of edges in , such that if we
eliminate them from the network there will be no directed
cycles. The nodes corresponding to in are denoted
by . For edges outgoing from nodes not in we will draw in
later stages of the algorithm the coding coefficients among poly-
nomials with degree at most , for some we will later deter-
mine. For edges outgoing from nodes in we will draw in later
stages the coding coefficients among polynomials with degree
at most , and multiply the result by . Therefore edges out-
going from nodes in always introduce at least a single delay.
In order to minimize the number of delay elements, it is desired
to minimize , or equivalently in the original network

. Finding the minimal set is essentially the known, long
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standing problem of finding the minimal arc feedback set. This
problem is NP-hard [21]. The best known approximation algo-
rithm with polynomial complexity achieves performance ratio

[22]. For our purposes, we can use ap-
proximate solutions and insert enough delays in the cycles.

We note that after the precoding stage, which inserted the
delays into the network, the coding coefficients themselves

are not required to be necessarily convolutional. They
can be taken from any algebraic field or a ring. However,
because of the delays inserted into the network the resulting
code seen by the decoder at the sink can always be interpreted
as a convolutional code.

C. Code Construction

We begin by presenting the flow chart of the algorithm shown
in Fig. 1. In this section we will explain step by step the parts of
the flow chart and the justification for them. The different blocks
in the figure are enumerated from 1 to 7, and in the following
we will address these blocks according to this enumeration. An
example network that illustrates the algorithm will follow the
description in Section III-D.

The first step of the construction in block 1 is the precoding
stage, which selects a node subset of the line graph denoted by

, such that any cycle in the line graph contains at least one
node in . For the following steps of the code construction, we
assign the coding coefficients . If , we choose

to be of the form where is a binary poly-
nomial in variable .

It is assumed that prior to the code construction, all the coding
coefficients in the network are set to zero. The code construction
algorithm goes in steps over the sinks. In block 2, in the th
step of the algorithm we consider the subgraph , which is
some maximal flow from source to sink , which maintains
the min-cut condition.

In block 3 the algorithm initializes the sets and . The
algorithm maintains a list of nodes , each belongs to a dif-
ferent path in and this list includes the most recently updated
nodes. Initially, the set is the set of nodes
with edges incoming from the dummy source . Each node in

has a vector associated with it in the set . We will specify
this set of vectors in the following. Initially, the vectors in are
the natural basis. In the following, we show that at each stage of
the code construction, the data can be decoded from the set of
vectors . This property is maintained also when the algorithm
terminates.

The algorithm goes through the nodes in in topological
order. It is possible to define a topological order for since
is acyclic as it can be decomposed into paths and cycles can
be eliminated from each path. In block 4 the algorithm proceeds
to the next node in the topological order in . The th
path in flow from to is denoted by , .
We note that the index simply means that the next node in
the topological order, which is denoted by , belongs to path

. The topological order does not necessarily follow one path
after the other, but can be any topological order. We use the

index only in order to facilitate our notation in the remainder
of the description of the construction algorithm and in the proofs
of the theorems that follow.

For each node the algorithm will determine a poly-
nomial coding coefficient for the edge
that connects this node to the node that follows it in the flow

. At the beginning of the th step some of the edges may al-
ready have nonzero coding coefficients assigned to them at the
previous steps . The coefficients in are up-
dated during the th step, in a manner described next.

In block 4, node is the current node in in the th path
. Denote by the subset of path consisting of all nodes

following the node in (not including ). We
denote by the set of coding coefficients of edges with tail in

and head in (i.e., all the nodes in that are not in
). We define as the union of these sets of coefficients

(15)

In Fig. 2(a) a schematic illustration of is given, in which the
coefficients in are specified and set to zero (the original net-
work is shown). The thick arrows are of edges in . Edges in
the path are marked by unfilled arrows. The dashed arrows
are of edges outgoing from edges in . Fig. 2(b) depicts the
same scenario for the corresponding line graph .

Observe that all the coefficients in correspond to edges ex-
iting from nodes that come after the nodes in in the topolog-
ical order. We define for each node a “partial” coding
vector in addition to the global coding vector :

Definition 1: The global coding vector maintains the
relation (6) when all the coding coefficients in the network are
set to their current value. The partial coding vector main-
tains the same relation (6) (with , replaced by ,

, respectively) when all the coding coefficients in are set
to zero.

In Fig. 2 the coefficients in are shown to be set to zero for
the definition of . The distinction between and
stems from the fact that the coding coefficients in might not
currently be zero, since they were already updated in previous
steps, performed for other sinks . Let

and . Initially, the vectors
in are set to be the columns of the unit matrix.

The code construction algorithm for acyclic networks in [5]
ensures that the set is a basis throughout its stages. In the al-
gorithm in [5] for acyclic networks, each coding coefficient was
determined once, jointly for all sinks. However, in the case of
this algorithm which proceeds in steps, one sink after the other,
the condition on is not sufficient to ensure that the network
code is decodable at each sink. The reason is that there are coef-
ficients that affect elements of , whose value may change later
in the algorithm. When the topological order is not well defined
(as for cyclic networks) or when the construction scheme does
not follow a topological order (when designing the acyclic net-
work code in a flow-by-flow manner) there may not be a valid
choice of a coding coefficient for a particular edge. This problem
occurs if we focus on the global coding vectors for the code
construction. This is the major challenge for designing a code
for cyclic networks. However, as we will show in the following,
when we focus for the construction on the partial coding vectors
instead of the global coding vectors, it is guaranteed that we can
still design the network code in an edge-by-edge fashion even



3868 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 8, AUGUST 2010

Fig. 2. A schematic illustration of � and � . (a) OriginalNetwork �. (b) Line Graph �.

even for cyclic networks. This fact enables us to design an effi-
cient code construction method for cyclic networks. An example
that clarifies this point appears in Section III-E.We note that we
chose to call the decoder sequential due to its operation, but it
is different than the classical sequential decoders (e.g., Fano de-
coder) of convolutional codes

We will show in this section that a sufficient condition to en-
sure that the network code is decodable at the sink is to require
that the set will span . As will be seen below, the al-
gorithm can progress and maintain as a basis up to the end
of the th step, when becomes the set of the incoming nodes
of sink . In this event the sets , are empty and
accordingly is empty, and so . Thus, at the end of the

th step the condition on is equivalent to the condition in [5]
for acyclic networks and the original input can be reconstructed
from the information carried by the incoming edges of using
the sequential decoder (as will be shown in Section IV).

Going back to the flow chart in block 4, when the algorithm
reaches node , it replaces with a new node that fol-
lows it in , and generates a new list . The
subset of path consisting of all nodes following nodes in
path is updated

(16)

Accordingly, is the set of coding coefficients of edges with
the tail in and the head in and is also changed to

(17)

There is a new set of partial coding vectors

, defined when the coefficients in are set to zero.

We note that in any step of the algorithm when the partial
coding vectors or the global coding vectors are required to be
computed, we use (14) for computing the vectors. We substitute
in it the corresponding values, either for the partial vectors or
the global vectors.

Before block 5, the algorithm has to determine if the set is

a basis. Let be the current coding coefficient be-

tween and the new node . If is a basis with coefficient

then the coefficient need not be updated and the

algorithm goes directly to block 6. If is not a basis then the
coding coefficient needs to be updated and the algorithm per-
forms block 5.

Let be the new coefficient determined at

the current step. If is not a basis, we have to change the

current coefficient into another coefficient

. Consider the following theorem we prove in
Appendix A:

Theorem 1: Suppose that with the coefficient

the set is not a basis. Then by changing it to any other value

, the set will become a basis.

Changing to an arbitrary value may affect the
sinks treated in the previous steps of the algorithm. Thus, if the
coding coefficient has to be replaced (i.e., when is not a basis)
before replacing it into a new value we need to analyze its effect
on the other sinks. Specifically, let be the set of incoming
nodes of the sink , . We have the following theorem.

Theorem 2: Denote by ,
, the set of global coding vectors of the incoming nodes

of before changing to . If
is a basis, then after the replacement at most a single value of
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will cause the new set of global coding vectors

not to be a basis.
The proofs of the theorem appear in the Appendix. Based on

these theorems, the procedure for replacing is as

follows. In block 5, if must be replaced i.e.,

is not a basis, we pick a new value according
to some enumeration. According to Theorem 1 for any other

, the set will be a basis. The old value of the
global coding vectors of the incoming nodes of with coeffi-
cient was the set . We can assume by induc-

tion that the set was a basis, since our assumption is that the
condition was satisfied prior to the current th step (to initialize
the induction, the assumption is trivially valid since for
the set , is empty).

In block 5, we compute the new set of global coding vectors
with the new coding coefficient . We check

if the independence condition is satisfied for all sinks. That is,
if is a basis for all sinks, . If the condition is not
satisfied for all sinks, we repeat the loop and pick the next coef-
ficient in the enumeration. Since by Theorem 2

for each sink at most a single choice of is bad, if
we have more than coefficients to choose from, we are guar-
anteed to have at least a single choice which is good for all pre-
vious sinks simultaneously. If the condition is satisfied for all
sinks, then block 5 is terminated. For the coefficients we can
take, for example, all the polynomials with minimal degree 0
and maximal degree . For the edges in the set , de-
termined in the precoding stage, we multiply the chosen coeffi-
cient by .

In block 6, the , and are updated to their new value.
After block 6, the algorithm checks whether we have already
reached the last edge in the topological order of . If the last
node of the topological order has already been reached, then the
algorithm proceeds to the block 7. The th step of the algorithm
continues until it reaches the sink , when as shown
in block 7. If the last node in has not been reached yet, the
algorithm continues to block 4. The algorithm terminates when
it goes over all sinks.

At the end of the algorithm we are guaranteed that for each
sink the set is a basis, according to our construction.
According to the analysis in [11], which we have repeated in
Section III-A, the elements of will be defined in .

The authors of [11] define the decodability of a code, which
we will repeat in Definition 2, in Section IV. In [11] it is shown
that if the elements of are in , then the code is decod-
able. Since the elements of in our construction are defined
in , it follows that our code is decodable. We will further
show in Section IV how the sequential decoder can be used in
order to efficiently decode the source data.

D. Code Construction for Example Network

In this section we illustrate the code construction for a simple
example network. The example network is depicted in Fig. 3(a),
with its line graph in Fig. 3(b). For simplicity, in the line graph

Fig. 3. Example network.

Fig. 4. Example network.

Fig. 5. Example network.

in Fig. 4, nodes that have a single input and a single output
were omitted, since they simply forward the symbol they receive
to the next node. In Fig. 5 the node chosen for is shown as
a filled circle. Fig. 6 shows and in dashed arrows. The
topological order of the nodes in each flow is also shown. Note
that the topological order is different for each flow.

In Fig. 7(a) the coding stage for the first sink in is shown
upon its termination, which is straightforward since it is the first
sink to be considered. The nodes are enumerated according to
the topological order in . Since node 4 is in its coding
coefficients are multiplied by and the coding vector at the
edge incoming into sink is .
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Fig. 6. Example network.

Fig. 7. Example network.

In Fig. 7(b), the stage of the second sink on is shown,
where at the current stage contains node and (shown as
filled circles), where now the nodes are enumerated according to
the topological order in . The first path from the source to sink

is . The second path is . Since
and are in it follows from definition that

and is an empty set. Thus the edge that is outgoing from
and incoming into is outgoing from a node in and

incoming into a node in . It follows that the coefficient
of that edge is in and is set to zero for the definition of .
The unfilled arrow of the edge in Fig. 7(b) indicates that the
coefficient is in .

At the current step the coding coefficient . The
partial coding coefficients for this scenario are shown. Since

is the zero vector, clearly the vectors in are not a basis
and a new coefficient has to be found.

In Fig. 8(a) we set . The partial coding vectors
of and are now independent, as anticipated by Theorem
1. To find and , the following equations have to be
solved:

(18)

The resulting global coding vectors are shown in Fig. 8(b).
The global coding vectors incoming into are and

(recall that is in ). Since they are independent,
the condition of Theorem 2 is maintained. Likewise, the global
coding vectors incoming into are and , which
are also independent. Therefore, the construction terminated
successfully.

Fig. 8. Example Network.

Fig. 9. � for example of a bad code.

E. Example of a Bad Code Designed Using

The set of partial coding vectors is critical for designing
codes for cyclic networks. In the following, we consider an ex-
ample network to show that in general using the set of global
coding vectors alone cannot lead to a feasible convolutional
network code.

Consider the example network illustrated in Fig. 9. Note
that since edge is the only incoming edge into , we can
assume that the head node of simply forwards the symbol
from into . The same assumption can be made also for

. Therefore for simplicity, in the line graph in Fig. 10 we
omit the nodes that represent and (these nodes would
simply receive and forward the same symbol).

This particular example is an acyclic network, but the algo-
rithm we examine for this example is our new algorithm. The
dashed edges are in for some , but not in . The other
edges are in . In this example . The coefficients
were determined in previous steps, for other sinks. The current
nodes in are and . The current values of the global
coding vectors and coding coefficients are shown in the net-
work. Suppose we have reached in the topological order and

we examine now whether to change the value of .

Since and are already

a basis, we leave the previous value un-

changed. Next we reach in the topological order and we

need to determine . But now for any value of
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Fig. 10. � of example of a bad code.

Fig. 11. � of example of a bad code (continued).

Fig. 12. � of example of a bad code (continued).

, we have and the new set

of vectors cannot be a basis! If we keep
in its old value as in Fig. 10, the situation will be as shown
in Fig. 11. As we see, .
Therefore, the two vectors are not independent. If we set

the situation will be as shown in Fig. 12.

As we see, . Therefore, the two
vectors are not independent.

F. Adding and Removing Sinks

In the code construction for acyclic networks in [5], there is
no direct simple way to add and remove sinks. If we remove or
add new sinks, the entire code and generally even the field size

have to be changed. In our algorithm for convolutional codes,
however, adding a new sink simply corresponds to a new step
in the algorithm. As we have shown in the construction algo-
rithm, in the th step performed for sink only coefficients
of edges in the flow between the source and the new sink
might be required to be changed. The modifications of the code
in the network are therefore more local. We note that some in-
formation will still be required to be exchanged between nodes.
However, the coefficients that will be required to be modified
are limited only to the nodes that are in a certain flow between
the source and the added (or removed) sink. Removing sinks is
analogous to adding sinks. By removing a sink we mean that the
sink will function as a regular node in the new network. Upon
removing a sink we will go over the edges in the flow between
the source and the removed sink in a way similar to a step of the
original construction algorithm. In this step we check for each
edge whether it is possible to decrease the memory size for the
coding coefficient while still maintaining the independence for
the other remaining sinks, not including of course the removed
sink. We observe that the efficient algorithm for removing and
adding sinks can be performed for any block or convolutional
linear network code, even if it was not originally constructed
according to our algorithm.

G. Complexity of the Code Construction

The complexity of the precoding stage depends on the spe-
cific algorithm we choose for selecting the nodes in . This
stage is very general, and is required also for other construction
algorithms of stable codes for cyclic networks. Therefore we do
not include it in the complexity computation.

For the construction algorithm it is required to compute the
transfer function from a certain node to another node. Therefore,
a data structure representing the matrix defined in (12)
is maintained. The relevant values of the coding coefficients
can be substituted in with complexity .
It follows from [23] and from the fact that for unit capacity
networks that given in (14) can be computed
from with complexity
where is called the exponent of multiplying two matrices
and known to be in the range . The coding vector

(or ) is given by the th column of matrix
where and are distinguished by the relevant values of
the coding coefficients substituted in matrix . Therefore
the coding vectors of all nodes can be computed in complexity

.
After the precoding, the algorithm finds the flows from the

source to the sinks. Since the complexity of the Ford and Fulk-
erson algorithm [24] for maximal flow is , the total
complexity of this stage, as in [5], is .

Now we turn to the steps of the algorithm. In the th
step, we initialize , and . The complexity of the
initialization is . For each node , the new set
is computed in complexity .
Since the independence test can be carried out by com-
puting the determinant of the matrix whose columns are the
vectors in it follows from [23] that the complexity is

. In the worst case
the new coding coefficient is drawn times, according
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to some enumeration. The independence test for is per-
formed only once, since according to Theorem 1 if it fails the
first time, it will succeed with any other coefficient .

We also test the independence of the new sets ,
. The computation of the vectors in ,

for the different coefficients has complexity
. The independence test of the

new sets for at most different coefficients and at most
different sinks has complexity

. For all edges in steps the com-
plexity is

. For simplicity, if we
neglect logarithmic factors (which were also neglected in [5])
the complexity is ,
since in a unit capacity network . In comparison,
the algorithm in [5] for acyclic networks has complexity

in the deterministic case.

IV. THE SEQUENTIAL DECODER

We show how the code can be decoded in a polynomial time.
In this section we define as the set of nodes in the flow

. This is because in multicast needs only the symbols of
these incoming nodes for decoding. We slightly modify for our
notation the definition of the decodability of an dimensional
convolutional multicast code from [11].

Definition 2: In a decodable convolutional network code, for
every sink there exists an matrix denoted by
over and a positive integer such that

, where is defined in (11) and is defined as the
decoding delay that depends on the sink and is the
identity matrix.

We briefly repeat here the derivation from [11] of the matrix
for decoding. Since the matrix has a nonzero de-

terminant over , it can be written as

(19)

where is some positive integer, and and are poly-
nomials over the binary field. We choose

(20)

where the adjoint matrix of . It can be verified that
matrix maintains the requirements of Definition 2 and
is the decoding delay.

Since the coding coefficients of our code are polyno-
mials, the elements of the matrices and in (14)
are also polynomials. Therefore, the elements of can be
written as rational power series, whose denominator is the poly-
nomial .

The first step of the sequential decoder is to multiply the se-
quence of symbols it receives at by .
The resulting symbols are given by

(21)

where was defined in (10) and given by the matrix relation
in (11) and . If is invert-
ible, as is the case for our code construction, so is . Since
the determinant of is a polynomial, it can be written as

(22)

where is a polynomial. In (22) we can identify , which is
also the decoding delay, as the smallest degree additive term of

. The decoder at receives the vector given
in (21). We assume that the elements of are polynomials,
which is the case for finite length transmission. Since the ele-
ments of matrix are also in , so are the elements of

. We choose

(23)

where is the adjoint matrix of . If the decoder left
multiplies the vector by the result would be

(24)

Multiplying by results in

(25)

We can write for any integer

(26)

where in our notation , for each polynomial element
of the matrices and vectors in both sides of the equation we keep
only the additive terms with degree lower than .

From (26) for we have

(27)

The decoder finds the smallest degree additive term of
, which is according to (22). Writing the th

row of (27) gives

(28)

where is the th row of the matrix . The left-
hand side (LHS) of (28) is the first bit of , which can
be computed from the right-hand side (RHS) term. Since we
are interested in we look only at the suffix
of length of each element of . From the received
signal we also need only the symbols that have arrived
from instant 0 to instant , which are altogether symbols.
Therefore, the delay for decoding the first symbol of each of the

source streams is indeed at most .
From (28) and the definition of matrix multiplication, we get

the “decoding relation”

(29)
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where is element of matrix . After we de-
code the first bit, there is a feed-forward step that compensates
for the effect of the first bit on all the future received symbols.
Suppose that the vector of the decoded first bit of each stream
is . The decoder has to multiply this
vector by the matrix

(30)

We subtract this vector from the vector

(31)

Since only the first transmitted bit of each stream affects the first
received bit of each of the incoming edges, after the compen-
sation described above, all the elements of will have a
zero constant term. Therefore, we can divide by

(32)

From this point we use for decoding as the vector
and continue to decode the second bit of each stream. Thus, the
binary symbols are decoded sequentially. The decoding process
is therefore given by (29)–(32).

We note that for some (or all) of the streams , the delay
may be smaller than . In (29), if all the terms have

as a common factor, then both sides of (29) can be divided
by , and a decoding delay of is achieved.

A. Decoding Delay

We denote the length of the longest trail of by . The
numerator of element of matrix , denoted by ,
corresponds to all the trails from node to node . Since the
degree of each polynomial coding coefficient is at most

, the degree of the numerator of the element is
at most the sum of the degrees of the coding coefficients over the
trail, bounded by . It follows that the elements
of the matrix are polynomials
with degree at most . We conclude that the
degree of the determinant of is at most

. Since the determinant is not the zero polynomial, it follows
from Section IV that the delay of the sequential decoder for
matrix is upper bounded by .

V. DISCUSSION AND FUTURE RESEARCH

The main result of the work is a polynomial time code con-
struction of a multicast linear network code for cyclic networks
that achieves the optimal rate. This is the first time such an algo-
rithm is given explicitly. We introduced an efficient sequential
decoding scheme for the code. We have analyzed the decoding
delay of this code. We have shown that the new code construc-
tion is useful also for acyclic networks, since when sinks are
added or removed, our algorithm can modify the existing code
in an efficient localized manner.

Quoting from [25], in which the polynomial time construction
for acyclic networks was introduced: “There are a number of
open problems for graphs with cycles. Is there a polynomial

time algorithm that finds a coding scheme with rate exactly ?
From a practical point of view even an approximate algorithm
would be interesting if it allows coding schemes that are faster to
decode.” Indeed, our construction is polynomial-time, achieves
the exact optimal rate and, using our sequential decoder, can
also be efficiently decoded.

An interesting direction for future research would be a code
construction for cyclic networks with multiple sources. Another
question for future research is how to design network codes for
cyclic networks such that the decoding delay is minimized. Fu-
ture research could also focus on the design and analysis of
codes for cyclic networks in the presence of noise.

APPENDIX

The following lemma will be needed for the proof of Theo-
rems 1 and 2. The lemma considers the relation between the set
of coding vectors (either global or partial) and the same set of
vectors, when a node associated with one of the vectors in the
set is in open loop, that is when all of the coefficients out of that
node are set to zero.

1) Lemma 1:

Lemma 1: Let be a line graph of the network
. Let be a set of nodes of and let

, be their coding
vectors, which may be partial or global coding vectors. Pick
index and consider the coding vectors of the same set of
nodes , where we set

for . The set is a basis if and only if
the set is a basis.

Proof: We find the relation between and . The differ-
ence is that in the definition of for . Sup-
pose that , are now set to their true values. Since
the code is linear, the effect of the network on the coding vector
of is that of a linear system. We split node into 3 nodes:

, and , which are connected by edges
and . For the split node, the coefficient ,

is equal to , in the original network.
Likewise, the coefficient , is equal to ,

in the original network. Since, as shown in Section III-A,
the code is defined over the ring of rational power series,
we can find a rational power series with a variable which
represents the transfer function of the linear system from node

to node in the network . According to the
definition of a rational power series, can be written in the
form , where and are polyno-
mials in . Since each directed cycle in the network contains at
least a single delay , can be written as ,
where is a polynomial in . We conclude that can be
written in the form . The relation between

and (when the coefficients , are
set to their true values) is shown in Fig. 13.

According to linear systems theory the relation between
and is given by

(33)
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Fig. 13. Relation between ���� � and ��� �.

An alternative way to show the relation between and
is by observing that can be also interpreted as a

sum of a geometric series

(34)

The factor never vanishes identically to zero since
is in the form . The other vectors are given
by

(35)

where is the transfer function from to . The vectors
in can represent rows of some matrix . Likewise, the vec-
tors in can represent rows of some matrix . The matrices

and have the same rank, since can be reached from by
multiplication of a row by a nonzero factor and adding a multi-
plication of this row to the other rows. Therefore is full rank
if and only if is full rank and the lemma follows.

2) Proof of Theorem 1:

Proof: Recall that the set of partial coding vec-
tors is defined
when all the coefficients in are zero. Also recall that
in the definition of the set of partial coding vectors

the coeffi-

cients in are set to zero.

Let denote the

coding vectors of when all the coefficients in are set to zero

and with the new coefficient . Denote by

the corresponding

set with the current coefficient . From these def-
initions we have

(36)

Note that all the vectors in (36) are defined when the coefficients
in set to zero. Since in the definition of the coefficients
in are set to zero, it follows that there is no feedback from
back to and therefore the vector is independent of

or .
We assumed that the previous set of partial coding vectors

is a basis. We want to

show that the set

is also a basis. We have
since both sets are defined with the coefficients in
set to zero. It follows that the vectors in the set

are independent. It remains to show that is inde-

pendent of . The vector in (36) is

dependent on because otherwise according to

Lemma 1 the set with would be a basis

and we would not have to change to another

. Trivially, it follows that the vector

is dependent on . If the new is dependent

on then following from (36) that
it can be written in the following form:

(37)

and it follows that:

(38)

Since is a basis and since is depen-

dent on , (38) can be maintained only if

. Therefore, for any other

choice of the vector is independent

of . Thus is a basis. It follows from Lemma

1 that since is a basis, the set is a basis for any

.

3) Proof of Theorem 2:

Proof: Assume that ,
defined in the theorem is a basis. We analyze under
which conditions the set of global coding vectors

, obtained after replacing

to , is also a basis.

Assume that the outgoing edges of , except ,

are . The system defined
in the proof of Lemma 1 can be expressed as

, where is a transfer function, defined as

but in the network and is

the transfer function defined in . The vector is the
coding vector of when the coefficients of the outgoing edges
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of are all zero. Then for an arbitrary coefficient

the global coding vector of is and is given by

(39)

We can divide by since the rational power series
can be written as , where and
are polynomials in , since each directed cycle in the network
contains at least a single delay. Note that can also be written
in the same form. Define as the coding vector of

when . From (39) we observe that when

, . Thus

(40)

where . Note the rational power series
can be written in the form , since and

can be written in this form. Therefore, for the new coding
coefficient we have

(41)

Similarly, for coefficient we have

(42)

The difference between the two vectors is

(43)

where the function is defined for a fixed

(44)

Consider the effect of the replacement from to
on the set of vectors at the input of another sink .

The linear network code is equivalent to a linear system oper-
ating on the coding vectors. Define the transfer function from

to , when , as the
rational power series . Similarly, define the transfer function

from to , when only the coefficient
as the rational power series . Due to superposition in linear
systems, the total transfer function from to before

replacing is

and after the replacement .

Therefore, the relation between and is given
by

(45)

Rearranging terms in (45)

(46)

where . We know that before changing

to the set of vectors

was a basis. We analyze under
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which conditions on the new set of coding

vectors, which is is also a
basis. Suppose the representation of in basis is

(47)

We examine independence of the vectors in according to
definition

(48)

If this equation has a solution other than ,
then is not a basis. Using (46), (48) translates into

(49)

Rearranging terms and using (47)

(50)

Since is a basis it is required that

...

or in matrix notation

...
(51)

...
. . .

...
...

...
(52)

We could divide by since

only for

, but we examine the case where

. We see that (51) can
be maintained only if or if has an
eigenvalue

(53)

In the following we show that matrix has an eigenvalue 0 with
multitude and an eigenvalue

(54)

with multitude 1. The rank of the matrix is 1. Therefore,
the solution of the equation has dimension . Thus
the geometric multiplicity of the eigenvalue is . The
algebraic multiplicity of an eigenvalue is not smaller than the
geometric multiplicity [26, Th. 8.5]. Therefore has an eigen-
value 0 of algebraic multiplicity of at least . Since the sum
of the eigenvalues of a matrix equals its trace, also has an
eigenvalue of algebraic multiplicity 1.

According to (53) . Therefore, we have only to consider
. Assume for now that

(55)

Then according to the definition of in (44)

(56)

where we could divide (55) by in order to derive
(56), since we already showed that if
then (53) cannot be maintained. We could multiply (55)
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by , since if

. Thus

(57)

Or

(58)

where does not

vanish identically to zero since we recall that

and are polynomials in whereas can be

written in the form , where and
are polynomials in . Rearranging terms in (58) we have

(59)

To show that we can divide (59) by

(60)

we have to prove that it does not vanish identically to zero. Sup-
pose that it does vanish identically to zero

(61)

Then according to (59) it follows that:

(62)

Therefore (61) becomes

(63)

But if , then (59) cannot be maintained

since [also, (61) cannot be
maintained since ]. We conclude that the term in (60)
does not vanish identically to zero and we can therefore divide
(59) by this expression, which yields

(64)

Therefore, for at most a single choice of , the one
given in (64), (55) can be maintained. It follows that for at most
a single choice of the set will not be a basis.
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